A refined shift-and-invert arnoldi algorithm for large unsymmetric generalized eigenproblems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward error analysis of the shift-and-invert Arnoldi algorithm

We perform a backward error analysis of the inexact shift-and-invert Arnoldi algorithm. We consider inexactness in the solution of the arising linear systems, as well as in the orthonormalization steps, and take the non-orthonormality of the computed Krylov basis into account. We show that the computed basis and Hessenberg matrix satisfy an exact shift-and-invert Krylov relation for a perturbed...

متن کامل

Generalized block Lanczos methods for large unsymmetric eigenproblems

Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error...

متن کامل

Shift-invert Arnoldi Approximation to the Toeplitz

The shift-invert Arnoldi method is employed to generate an orthonormal basis from the Krylov subspace corresponding to a real Toeplitz matrix and an initial vector. The vectors and recurrence coefficients produced by this method are exploited to approximate the Toeplitz matrix exponential. Toeplitz matrix inversion formula and rapid Toeplitz matrix-vector multiplications are utilized to lower t...

متن کامل

Least Squares Arnoldi for Large Nonsymmetric Eigenproblems

In this paper, we propose a highly e cient accelerating method for the restarted Arnoldi iteration to compute the eigenvalues of a large nonsymmetric matrix. Its e ectiveness is proved by various numerical experiments and comparisons with other approaches. Several new results on the characteristics of the polynomial acceleration are also reported. The Arnoldi iteration has been the most popular...

متن کامل

A Parallelizable and Fast Algorithm for Very Large Generalized Eigenproblems

We discuss a novel iterative approach for the computation of a number of eigenvalues and eigenvectors of the generalized eigenproblem A x = ABx . Our method is based on a combination of the JacobiDavidson method and the QZ-method. For that reason we refer to the method as JDQZ. The effectiveness of the method is illustrated by a numerical example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2002

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(02)00220-1